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Introduction

.,

/
- > Ajcai, Komlos, and Szemeredi [1]

| S

}ecently proposed a sorting network

—~y
WY
o

e

(referred to hereafter as the AKS network) , “of O(nlogn) comparators and

LR g
S

0(logn) depth. Their construction is of great theoretical interest, for
‘j it shows that O(nlogn) comparisons suffice to sort n elements, even under

the constraint that comparisons be nonadaptively executed in O(logn) parallel

stages. At present, the AKS network appears not suitable for practical

implementations, due to the large value of the constants; however, improve-

ments are conceivable that could make the network more attractive for
real-world applications.
It is therefore natural to ask what is the performance of the AKS network

N
in the synchronous VLSI model of computation which has been proposed [2] to
/7

-

capture the essential features of planar very large scale integration as a

computing eanvironment.

In this model it is known that any chip capable.of sorting n words of
’»J'al‘k' }.',)l“k G TP

¢ o
length q = (l+§)logn, with ? > 0, must satisfy the relationsQEE/AIz = Q(nzlog'n),

where A is the chip area, and T is the computation time. ~This lower bound

L v e
has been originally obtained by Thompson [2] under the word local restriction
(all the bits of the same word enter the circuit at the same input port).

Recently leighton [3] has shown that the lower bound holds valid even for

non-word-local designs.

This work has been supported in part by the Joint Services Electronics Program
under Contract N0001l4-79~C-0424 and by the IBM Predoctoral Fellowship Program.
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!! Many designs of VLSI sorters have already been proposed (see Thompson }Z
; (4] for a survey). We mention here the ones that achieve minimum area
-; A= e(nzlogzn/TZ) at their computation time T: "
t' * = the mesh-connected [1,5,6) bitonic sorter [7], for T = 0(/a). ;E
b - the pleated-cube-connected-cvcles (PCCC) {8] also implementing .
{' bitonic sorting for T in the range [Q(log%),O(vM)]. )
EA - a hybrid architecture based on the cube-connected-cycles and the ;
or;hggonal trees interconnections [9], which implements the E
,E enumeration sorting schemes of [10], and works in minimum computation
- time T = O(logn).
g - a hybrid architecture consisting of orthogonal trees and permuter ;i
i networks [3], which implements a generalization of the even-odd sort :‘
[7], and also works in time T = O(logn). ia
It is then interesting to see how the AKS algorithm, which is radically ;&
.! diff{erent from any other known sorting paradigm, compares with more classical =
. sorting methods in the VLSI environment, where the heaviest demand cf resources ii
: usually comes from communication, rather than from computing requirements, so ;i
o that a small number of processing elements does not necessarily imply a good o
performance. 1
i' In this note we show that the AKS sorting network can indeed be laid out 'T

2
in area A = 0(n"), while maintaining an O(logn) computation time, therebyv

[
" <!
.s

establishing its optimality in the VLSI model of computation.
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Lavout of the AKS Network

The original description [1] of the AKS network (with n inputs) is given
in terms of an n-node graph G = (V,E), whose nodes are registers, and whose
edges are comparators. The set of edges E is partitioned as E = El U Ez u ...uJ EN’
vwhere each of the Es's is a (possibly partial) matching on V, and N < 8 logn for
some (very large) constant 8. Since each Es (s =1,...,N) is a (possibly
partial) matching, all of its comparators can be simultaneously active. Thus
the AKS sorting algorithm can be described as follows:
begin for si= 1 to

for all (x,y) € Es, and x < y pardo
(R(x) ,R(y)) := (min(R(x),R(y)),max(R(x),R(y)))

end

where R(x) 1is the content of the register associated with node x.

Since the embedding of a graph in a planar grid requires nodes of bounded
degree, we shall modify the original description as follows. According to a
scheme described by Kanuth [11], we consider n lines that run parallel, say,
to the horizontal axis. On line r (r = 1,2,...,n) there will be N processors
p(r,1],...,P[r,N], whose capability will be specified below. For each
s =1,2,...,N, and for each (x,y) € Es, we connect processors P[(x,s] and
P{v,s] by a vertical line. Such vertical line supports the execution of the
comparison-exchange (R(x),R(y)) : = (ain (R(x),R(y)),max(R(x),R(y))), where
R(x) and R(y) are respectively the operands stored in P(x,s] and Ply,s].

Once the comparison-exchanges specified by Es have been executed, the

results will be forwarded on each line (that is, from P(x,s] to P(x,s+1],

x=1,...,a).

e e

S N
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This basic layout can be further specified by selecting the degree of

parallelism of the operand transmission. Due to the amenability to

pipelined operation, the q-bit operands are fed in bit-serial fashion
starting with the most significant bit and each processor is equipped with

a serial comparator. In each comparator, as long as the two inputs agree,
they are transmitted to the next processor on the same line. As soon as a
bit discrepancy is detected, a switch is set and, from then on, the remaining
substrings of each of the operands will follow a fixed path independently

of their value.

Thus we have ensured that the AKS network works in T = O(logn+q) = O(logn)
time, and we turn our attention to the layout area. We first observe that
both the horizontal, and the vertical lines are of 0(1) width. It is then
simple to conclude that the height of the entire layout is O(n). On the
other hand, any matching of n lines can be easilv laid out in (at most) 5/2
vertical tracks of constant width, by using a track for each edge of the
matching. Since there are N = O(logn) matchings to be cascaded in the AKS
network, it is readily proved that O(nlogn) width, and therefore O(nzlogn)

area, suffices for the layout. A closer analysis however, reveals that many

¥y

of the matchings E.,...,E, are such that maanv edges can be laid out, without

1 N

overlap, in the same vertical track, vielding the conclusion that the bound

.

e
(

Al

1 4
s

for the area can be lowered to O(nz). i«

To establish this claim we introduce the following top-down description £§
of the lavout of the AKS network. The lavout could be analyvzed as the assembly ss
of suitable simpler building blocks, whose hierarchv is illustrated in Figzure 1. ,;

-
Py

fach of these pbuilding blocks will now be described in detail, in a top-dowm

2 e
s 8

fashion. K2
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Depth

AKS network

1+ 3 logn
cherry stage

1
n-NEARSORTER

log(1l/n)
e-HALVER

c

l1-factor network
(matching)

Figure 1. Hierarchy of building blocks of the AKS network. The depth is

expressed as the length of the cascade of blocks of the
immediately lower level.

(1) The AKS network on n = 2d inputs is the cascade of (1+3d) stages,

called cherry stages, and denoted by 50'511'512’513"'"Sdl’sd2’5d3

P ]
0 P

(Figure 2).
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Figure 2. The AKS network on 2d input is'che cascade of (1l+3d) cherry stages.
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(2) To each cherry stage St h (t=1,...,d; h = 1,2,3) there corresponds a
»

partition P:,h of the integers (lines) 1,2,...,n. Although the assignment
of the integers to the partition blocks is too complicated to be repeated
here (the reader is referred to [1l]), what is important now are the

properties of P: h that are relevant to the layvout. Specifically, Pt h
*

consists of the following (disjoint) blocks:

21
= = H = .oo,L - ’ .’1,2,-c-,2 }
Ptl Pt3 {T:(Zi,j). i=0,1, (e=1)/2); ]

P, = (T @L-1).D: L = L2seee, LE/205 5 = 1,2,...,25°7 U T (1,00}

To stage S, there corresponds the trivial partition Po consisting of one

0
block only.
If we now define as span(T) the smallesc interval of {1,...,a} containing

T< {1,...,n}, we have the following properties:

(1) For given t and 1, and j'# j, span(Tt(i,j)) n span(Tt(i,j')) = 5.
(2) ispan(Tt(i,j))l :_n/Zi for every ¢t and j.
(3) ;rt(i,j)i < a/2t A" for every j, where y and A = 2% > 1 are

constants.

The lines aumbered by the integers in a block Tc(i,j) are involved in a

aetwork of comparators called an n-nearsorter (see Figure 3). Properties (1) and
(2) show that for any fixed t and i, all n-nearsorters corresponding to

{Tt(i,j) :j = 1.2,...,2i } can be laid out in the same vertical strip

as shown in Figure 3. Moreover, all nearsorters in the same cherrv stage

can operate in parallel (indeed, no two share a line).
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Figure 3. Typical cherrv stages S

el and Scz (t is even in the figure).

The region labelled Tc(i,j) correspound to the lavout of an
n-nearsorter.

(3) An n=-NEARSORTER, corresponding to block T:(i,j). has the structure

of a full binary tree of depth log2 %. Each node of this tree is a

network of comparators, called an ¢-HALVER (see (%)), encompassing an

PR |
.
e,

interval of lines (Figure 4). If m = ch(i,j)[, then the root encompasses
m lines; if a node v of the tree encompasses s lines, then 5

its two offsprings encompass each (approximately) s/2 lines.
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g na inputs
m/4 ¢-HALVER
m/2 e-HAL
@ inputs
e-HAL
lines of
L I Y
Tc“'j):\> -
e-HALVER -
m/2 K
c-HAL j

Figure 4. aAn »-NEARSORTER is a full binary tree of ¢ -HALVERS.

(4) aAn <-HALVER stage on m lines (with ¢ < n/(log 1/1)) consists of the
cascade of ¢ (where ¢ is a function of €, but is independent of m)

one-factor stages (matching stages). (When the network is viewed as

.- e e e e
P20 B AP
€ e

M

a graph G = (V,E), i.e. when each line is shrunk to a single node, the
e~HALVER becomes an expander graph on the set of nodes on which its f$

edges are incident.) (See Figure 3.)




9
-
D l o0 h [ R N J c
e Figure 5. An e-HALVER is a cascade of a constant number of one-factors.
(5) Firally a one-factor stage on m lines is a matching between the lower
I' and the upper half of these lines, and it is a subset of exactly ome
- of the sets {Es: s =1,...,N} introduced earlier. (See Figure 6.)
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‘ Figure 6. A one-factor is a matching between the top and the bottom half

of lines.
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Now we proceed, bottom-up, to analyze the area of the network.

(1) A one~factor stage on m lines can be laid out in O(m) leangth, by
allocating a vertical track for each of the m/2 edges. The height
of the layout will be proportional to the distance between the
topmost and the bottommost of the input lines.

(1i) An e-HALVER has a length of O(cm); ¢ is the valence of the e-HALVER.

(iii) An n-NEARSORTER has a length also of Q(c¢cm), since the length

of the =-HALVERS decreases geometricallv with the level.

(iv) We now subdivide the lavout into vertical slabs, with slab(t,i)
containing the nearsorter on sets Tt(i,j) for all suitable values
of j. (There are in fact two identical copies of Tt(i,j) when 1 is
even, but this will only affect constant factors.) From point (iii)
and property (3) it immediately follows that
2¢t,1) 2 langes of slab(c,i) <y 2 Tt
Then, the total length % can be obtained by summing 2(t,i) over all che

vertical slabs:

d t d d
2= I T Ue,i) = < r «e,i)
t=0 i=0Q i=0 t=i

d -i d t-i 2v
<ya L27I (/48 :-I:%T7KT n.
i=0 t=i

2
In conclusion A = height x length = 0(n) x O(n) = O(n") as claimed.
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